Examples handout

August 31, 2025

0.1 Setup.

Fix $n \geq 2$, $G = GL_n$, T the usual torus, $X^*(\hat{T}) = \mathbf{Z}^n$ as usual, $\alpha_i \in X^*(\hat{T})$ the usual roots with $1 \leq i \leq n-1$.

We know that generalized Steinberg representations of $G(\mathbf{Q}_p)$ are in canonical bijection with subsets $I \subset \{1, 2, \dots, n-1\}$. Explicitly, given $I = \{i_1 < \dots < i_k\}$, let P_I be the standard parabolic with Levi $\mathrm{GL}_{i_1} \times \mathrm{GL}_{i_2-i_1} \times \dots \times \mathrm{GL}_{i_k-i_{k-1}} \times \mathrm{GL}_{n-i_k}$, and let π_I be the unique irreducible quotient of $\mathcal{C}(P_I(\mathbf{Q}_p)\backslash G(\mathbf{Q}_p))$. Under this bijection, $I = \emptyset$ gives the trivial representation and $I = \{1, 2, \dots, n-1\}$ gives the Steinberg representation.

More generally, pick any $0 \le d < n$ (or really any d), and let $b_{d/n} = b_d$ be the basic isocrystal of slope d/n. Write n' = n/(d,n) and d' = d/(d,n), where we declare (0,n) = n. Then $G_{b_d} = \mathrm{GL}_{(d,n)}(D_{\frac{d'}{n'}})$ is an inner form of G, and generalized Steinberg representations of G_{b_d} are in canonical bijection with subsets $I \subset \{1,2,\ldots,(d,n)-1\}$, by the same recipe as above. When $I = \{1,2,\ldots,(d,n)-1\}$, $\rho_I = \mathrm{St}_{G_{b_d}}$ is the Steinberg representation.

Let I^c denote the complement of I in $\{0 < j < (d, n)\}$, and let I^t denote the transpose $(j \in I)$ iff $(d, n) - j \in I^t$. One can show that $\rho_I^{\vee} = \rho_{I^t}$ and $\operatorname{Zel}(\rho_I) = \rho_{I^c}$.

0.2 Examples

By an old calculation of Drinfeld, we have

$$R\Gamma_c(\Omega^1, \mathbf{Q}_\ell) = \mathrm{St}[-1] \oplus \mathbf{1}[-2].$$

This was generalized by Schneider and Stuhler: for any $n \geq 2$ we have

$$R\Gamma_c(\Omega^{n-1}, \mathbf{Q}_\ell)[n-1] = \operatorname{St} \oplus \pi_{\{2,3,\dots,n-1\}}[-1] \oplus \pi_{\{3,4,\dots,n-1\}}[-2] \oplus \dots \oplus \pi_{\{n-1\}}[2-n] \oplus \mathbf{1}[1-n].$$

In modern terminology, Ω^{n-1} is the basic Newton stratum in the flag variety $\mathbf{P}^{n-1} = \operatorname{Gr}(1, n)$. What about the basic Newton strata in other flag varieties?

Take Gr(2,4). Then the (normalized) cohomology of $Gr(2,4)^{\text{bas}}$ is

$$\mathrm{St}[1] \oplus \pi_{\{1,3\}} \oplus \pi_{\{1\}}[-1] \oplus \pi_{\{3\}}[-1] \oplus \mathbf{1}[-2] \oplus \mathbf{1}[-4].$$

Same for Gr(2,5). Then the cohomology is

$$St^{2} \oplus \pi_{\{2,3,4\}}[-1] \oplus \pi_{\{1,2,4\}}[-1] \oplus \pi_{\{1,2\}}[-2] \oplus \pi_{\{2,4\}}[-2] \\ \oplus \pi_{\{2\}}[-3] \oplus \pi_{\{4\}}[-3] \oplus \mathbf{1}[-4] \oplus \mathbf{1}[-6].$$

Same for Gr(2,6). Then the cohomology is

$$\begin{split} \operatorname{St}[1]^2 \oplus \pi_{\{1,2,4,5\}} \oplus \pi_{\{2,3,4,5\}} \oplus \pi_{\{1,2,5\}}[-1] \oplus \pi_{\{2,4,5\}}[-1] \\ \oplus \pi_{\{1,2\}}[-2] \oplus \pi_{\{2,5\}}[-2] \oplus \pi_{\{4,5\}}[-2] \oplus \pi_{\{2\}}[-3] \oplus \pi_{\{5\}}[-3] \\ \oplus \mathbf{1}[-4] \oplus \pi_{\{5\}}[-5] \oplus \mathbf{1}[-6] \oplus \mathbf{1}[-8]. \end{split}$$

Same for Gr(3,6). The cohomology is

$$St[2]^2 \oplus \pi_{\{1,2,3,5\}}[1] \oplus \pi_{\{1,3,4,5\}}[1] \\ \oplus \pi_{\{1,2,3\}} \oplus \pi_{\{1,3,5\}} \oplus \pi_{\{3,4,5\}} \oplus \pi_{\{1,3\}}[-1] \oplus \pi_{\{1,5\}}[-1] \oplus \pi_{\{3,5\}}[-1] \\ \oplus \pi_{\{1\}}[-2] \oplus \pi_{\{1\}}[-4] \oplus \pi_{\{3\}}[-2] \oplus \pi_{\{5\}}[-2] \oplus \pi_{\{5\}}[-4] \\ \oplus \mathbf{1}[-3] \oplus \mathbf{1}[-5]^2 \oplus \mathbf{1}[-7] \oplus \mathbf{1}[-9].$$

In these calculations, we're really computing $i_1^*T_{\wedge^d \text{std}^\vee}i_{b_{d/n}}$!1. In fact, we can compute any composition $i_{b_{d/n}}^*T_{V_\mu}i_{b_{e/n}}$! ρ where ρ is a generalized Steinberg of $G_{b_{e/n}}$ and $\mu=(w_1,\ldots,w_n)$ is any dominant weight. Note that this composition vanishes unless $d=e+\sum_{1\leq i\leq n}w_i$. Here are some more examples:

For any GL_n ,

$$i_{b_{1/n}}^* T_{\mathrm{std}} i_{1!} \mathrm{St} = \mathbf{1}^n$$

(this was previously known).

On GL_6 ,

$$i_{b_{3/6}}^* T_{\wedge^3 \text{std}} i_{1!} \text{St} = \text{St}^{14} \oplus \rho_{\{1\}} [-1]^2 \oplus \rho_{\{2\}} [-1]^2 \oplus \mathbf{1} [-2] \oplus \mathbf{1} [-4]$$

and

$$\begin{split} i_1^*T_{\wedge^3\mathrm{std}^\vee} i_{b_{3/6}!} \mathrm{St} &= \mathrm{St}^5 \oplus \pi_{\{1,2,3,4\}} [-1]^2 \oplus \pi_{\{2,3,4,5\}} [-1]^2 \oplus \pi_{\{1,2,4,5\}} [-1] \\ & \oplus \pi_{\{1,2,4\}} [-2] \oplus \pi_{\{2,3,4\}} [-2] \oplus \pi_{\{2,4,5\}} [-2] \\ & \oplus \pi_{\{1,2\}} [-3] \oplus \pi_{\{2,4\}} [-3] \oplus \pi_{\{4,5\}} [-3] \\ & \oplus \pi_{\{2\}} [-4] \oplus \pi_{\{4\}} [-4] \oplus \mathbf{1} [-5] \oplus \mathbf{1} [-7]. \end{split}$$

On GL_8 ,

$$i_{b_{4/8}}^* T_{\text{std}} i_{b_{3/8}!} \mathbf{1} = \operatorname{St}^2 \oplus \rho_{\{1,2\}} [-1]^2 \oplus \rho_{\{1\}} [-2] \\ \oplus \rho_{\{1\}} [-4] \oplus \mathbf{1} [-5] \oplus \mathbf{1} [-7].$$

On GL_9 ,

$$i_{b_{3/9}}^* T_{\text{std}} i_{b_{2/9}!} \mathbf{1} = \operatorname{St}^3 \oplus \rho_{\{1\}} [-1] \oplus \rho_{\{1\}} [-3]^2 \\ \oplus \mathbf{1} [-4] \oplus \mathbf{1} [-6] \oplus \mathbf{1} [-8].$$